Applied Actuator Fault Accommodation in Flight Control Systems Using Fault Reconstruction Based FDD and SMC Reconfiguration
نویسندگان
چکیده
Historically, actuators’ redundancy was used to deal with faults occurring suddenly in flight systems. This technique was generally expensive, time consuming and involves increased weight and space in the system. Therefore, nowadays, the on-line fault diagnosis of actuators and accommodation plays a major role in the design of avionic systems. These approaches, known as Fault Tolerant Flight Control systems (FTFCs) are able to adapt to such sudden faults while keeping avionics systems lighter and less expensive. In this paper, a (FTFC) system based on the Geometric Approach and a Reconfigurable Flight Control (RFC) are presented. The Geometric approach is used for cosmic ray fault reconstruction, while Sliding Mode Control (SMC) based on Lyapunov stability theory is designed for the reconfiguration of the controller in order to compensate the fault effect. Matlab®/Simulink® simulations are performed to illustrate the effectiveness and robustness of the proposed flight control system against actuators’ faulty signal caused by cosmic rays. The results demonstrate the successful real-time implementation of the proposed FTFC system on a non-linear 6 DOF aircraft model. Keywords—Actuators’ faults, Fault detection and diagnosis, Fault tolerant flight control, Sliding mode control, Geometric approach for fault reconstruction, Lyapunov stability.
منابع مشابه
On the development of a sliding mode observer-based fault diagnosis scheme for a wind turbine benchmark model
This paper addresses the design of an observer-based fault diagnosis scheme, which is applied to some of the sensors and actuators of a wind turbine benchmark model. The methodology is based on a modified sliding mode observer (SMO) that allows accurate reconstruction of multiple sensor or actuator faults occurring simultaneously. The faults are reconstructed using the equivalent output err...
متن کاملOn the development of a sliding mode observer-based fault diagnosis scheme for a wind turbine benchmark model
This paper addresses the design of an observer-based fault diagnosis scheme, which is applied to some of the sensors and actuators of a wind turbine benchmark model. The methodology is based on a modified sliding mode observer (SMO) that allows accurate reconstruction of multiple sensor or actuator faults occurring simultaneously. The faults are reconstructed using the equivalent output err...
متن کاملAn Unknown Input Observer for Fault Detection Based on Sliding Mode Observer in Electrical Steering Assist Systems
Steering assist system controls the force transfer behavior of the steering system and improves the steering probability of the vehicle. Moreover, it is an interface between the diver and vehicle. Fault detection in electrical assisted steering systems is a challenging problem due to frequently use of these systems. This paper addresses the fault detection and reconstruction in automotive elect...
متن کاملControl Reconfiguration of a Boiler-Turbine Unit After Actuator Faults
Boiler-turbines are one of the most important parts in power generation plants. The safety problem in such systems has always been a special concern. This paper discusses the application of control reconfig uration by fault-hiding approach for a boiler-turbine unit. In Fault-hiding approach, after occurrence of a fault, nominal controller of the system remains unchanged; instead, a reconfigurat...
متن کاملSimultaneous state and parameter estimation based actuator fault detection and diagnosis for an unmanned helicopter
Simultaneous state and parameter estimation based actuator fault detection and diagnosis (FDD) for single-rotor unmanned helicopters (UHs) is investigated in this paper. A literature review of actuator FDD for UHs is given firstly. Based on actuator healthy coefficients (AHCs), which are introduced to represent actuator faults, a combined dynamic model is established with the augmented state co...
متن کامل